

Time of day matters: Diurnal changes of CO₂ fluxes across European streams

<u>Katrin Attermeyer</u>, Joachim Audet, Laura Barral-Fraga, Tea Basic, Adam Bednařík, Georgina Busst, Joan Pere Casas-Ruiz, Núria Catalán, Sophie Cauvy-Fraunie, Miriam Colls, Elvira de Eyto, Anne Deininger, Alberto Doretto, Brian C. Doyle, Vesela V. Evtimova, Stefano Fenoglio, David Fletcher, Jérémy A. Fonvielle, Anna Freixa, Thomas Fuß, Peter Gilbert, Catie Guttman-Roberts, Sonia Herrero, Lyubomir A. Kenderov, Marcus Klaus, José L. J. Ledesma, Liu Liu, Clara Mendoza-Lera, Juliana Monteiro, Jordi-René Mor, Magdalena Nagler, Georg H. Niedrist, Christian Noss, Anna C. Nydahl, Nina Pansch, Ada Pastor, Josephine Pegg, Francesca Pilotto, Ana Paula Portela, Clara Romero, Ferran Romero, Martin Rulík, Wiebke Schulz, Danny Sheath, Nikolay Simov, Xisca Timoner, Pascal Bodmer

SEFS 2017, Olomouc 04.07.2017

- 1st Collaborative European Freshwater Science Project for Young Researchers ("FreshProject")
- A call initiated by the European Federation of Freshwater Sciences (EFFS) board, the European Fresh and Young Researchers (EFYR) and representatives of the Fresh Blood for Fresh Water (FBFW)
- Financially supported by national limnological societies from Austria, France, Germany, Italy, Spain/Portugal, Switzerland and United Kingdom

"Encourage young freshwater researchers across **Europe** to create synergistic interactions that lead to new knowledge, promote **networking** among young European Limnologists and offer experience in generating research ideas, acquiring funding, planning and carrying out a collaborative international scientific project."

TINGO'S

Europe

Assessing CO₂ Fluxes from **Euro**pean **Run**ning Waters <u>https://freshproject-eurorun.jimdo.com/eurorun/project-eurorun/</u>

Scientific project

Networking

Scientific background

- Inland waters can emit carbon that was fixed on land
- Better understanding of fluxes and their mechanisms/dynamics needed

- 3 Pg C yr⁻¹ is emitted as CO₂ from global inland waters
- up to 70% of the global CO₂ flux is assigned to running waters

EuroRun project

Figure 7. Seasonal and day-night differences in CO₂ evasion flux from Oberer Seebach stream water to the atmosphere. Shown are the medians and quartiles (box) and the whiskers indicating the minima and maxima accounted for outliers with more than $1.5 \times$ of the interquartile variation.

Peter et al. 2014 J Geophys Res Biogeosci

EuroRun project

Assessing CO₂ Fluxes from **Euro**pean **Run**ning Waters <u>https://freshproject-eurorun.jimdo.com/eurorun/project-eurorun/</u>

Europe

Scientific project

Diurnal patterns

Seasonal patterns

Networking

Workshop for teaching construction of the chamber, the handling and the data analysis

The teams

Workshop – September 2016

Workshop – September 2016

Field survey

Seasonal campaigns at fixed time periods:

- CO₂ fluxes with floating chamber
- pCO₂ in the water with equilibration method (if possible)
- Physico-chemical parameters with multiprobe

Field survey

Seasonal campaigns at fixed time periods:

- CO₂ fluxes with floating chamber (11 am and 11 pm GMT)
- pCO₂ in the water with equilibration method (if possible)
- Physico-chemical parameters with multiprobe

Overview CO₂ fluxes – all teams/all seasons

Differences

$$F_{CO_2} = k \left(CO_{2 water} - CO_{2 atm} \right)$$

$$F_{CO_2} = k \left(CO_{2 water} - CO_{2 atm} \right)$$

Results

Results

CO₂ fluxes in Austrian alpine streams

CO₂ fluxes in Austrian alpine streams

CO₂ fluxes in Austrian alpine streams

Results

Results

Results

Results

• 9 of 65 increases in CO₂ fluxes change from uptake to emission (14%)

Results

- Majority of streams shows higher fluxes in the night
 - Mostly driven by increased pCO₂ in the night
 - Some streams turn from a sink to a source of CO₂

Time of day matters

(IPCC 2013)

Acknowledgement

THANKS

